environMENTAL - Reducing the impact of major environmental challenges on mental health Seminar 2 – April 22, 2022

Leveraging multi-omics data towards a molecular and neurobiological understanding of mental illness

Sylvane Desrivières

Professor in Biological Psychiatry

Institute of Psychiatry, Psychology & Neurosciences

King's College London, UK

Molecular, neurobiological and systemic mechanisms underlying brain and behaviour

environMENTAL - Seminar 2

Reducing the impact of major environmental challenges on mental health

Aims & Approaches

Seminar 2 – Agenda

Molecular analyses: multi-'omics

- 10:05-10:30 Leveraging multi-omics data towards a molecular and neurobiological understanding of mental illness (Sylvane Desrivières)
- 10:30-11:00 Ultra-high-throughput proteomic analyses (Markus Ralser)

Virtual Brain models

- 11:00-11:30 Systemic characterisation in virtual brain models (Viktor Jirsa)
- 11:30-12:00 Simulation of Digital Twin Brains and Applications (Jianfeng Feng)

Cellular models & 3D brain organoids

• 12:00-12:30 Pluripotent stem cell lines and 3D brain organoids (Gaia Novarino)

Closed meeting

• 12:30-13:00 General discussion

Leveraging multi-omics data towards a molecular and neurobiological understanding of mental illness

Multilevel 'omics data help fine mapping of complex loci and identification of causal genes

Evangelou et al. Nature Human Behaviour volume 3, pages 950–961 (2019). New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders

The Corticotropin Releasing Hormone Receptor 1 pathway and stress

SNPs in CRHR1

- interact with stressful life events to predict heavy alcohol use.
- Allele associated with stress-related heavy drinking is linked to increased expression of CRHR1 (= expression quantitative trait loci; eQTL) in several tissues, including the brain that alter.
- Activation of the CRH pathway is associated with anxiety. Blockade of the CRH pathway reduces anxiety.
- Crhr1 mutant mice show impaired stress response and reduced anxiety.
- CRHR1 = easy drug target (plasma membrane receptor)

CRHR1 is part of the stress-activated HPA axis

Integrating measures of environmental influences into 'omics analyses

Blood DNA methylation as biomarker for psychopathology

Enrichment analyses:

- Biological Process: regulation of tumor necrosis factor-mediated signaling pathway
- Mouse Phenotypes: small adrenal glands; abnormal substantia nigra morphology

The HPA axis, stress and the immune system

Longitudinal study of DNA methylation ENIGMA-Epigenetics

Clusters of conserved, co-regulated DNA_m across adolescence

Enrichment analyses				
	Biological process (GO)	FDR	Pathway (KEGG)	FDR
Cluster 1*	nervous system development	8.42E-09		
Cluster 2*	Cellular macromolecule metabolism	8.58E-71	neurodegeneration endocytosis spliceosome cancer HPV infection	1.69E-08 6.11E-06 9.22E-06 9.22E-06 9.22E-06
Cluster 3	localisation neuron projection anatomical structure development	2.58E-08 2.58E-06 2.92E-06	actin cyotoskeleton Insulin signalling Axon guidance	5.06E-03 1.02E-02 1.30E-02
Cluster 4	Cell fate commitment Brain development	2.25E-04 2.25E-04	Stem cell pluripotency Breast cancer	4.00E-03 8.60E-03

Di Chen, Tianye Jia et al., in preparation

*Large overlap with S Horvath DNAm age

IMAGEN, STRATIFY & ESTRA – Deeply phenotyped longitudinal cohorts

Enrichment of deeply phenotyped cohorts by acquisition of multi-omics data Maintegrative analyses with other data layers

Thank you

Contact details: Sylvane Desrivières

+44 (0)20 7848 0528 sylvane.desrivieres@kcl.ac.uk https://www.kcl.ac.uk/people/sylvane-desrivieres

© 2019 King's College London. All rights reserved