

A patient-derived disease model of Phelan McDermid Syndrome for the identification of SHANK3-specific compounds

Amandine Thibaudeau Loïc Cousin, PhD Aurore Vuidel Amélie Weiss Johannes Wilbertz, PhD

CONFIDENTIAL • for discussion purposes only

How to create a neuronal disease model and screen compounds with it

• Most neurological disease are hard to treat

Occurrence **early in life**: Development \rightarrow *Treatment possible*? Occurrence **throughout life**, but detection late \rightarrow *Treatment possible*?

- Rare neurological disease are useful for mechanistic studies & drug development: Often a mono genetic "in-road" or "trigger" is known
- Can rare/genetic forms of a disease serve as an example for a general class of diseases?

Parkinson's disease: Protein aggregation, mitochondrial defects, signaling pathways (LRRK2)

Autism spectrum: Neuronal development, synaptic biology, network activity modulation (stim/inh)

ASDs have an interconnected Developmental & Synaptic pathophysiology

(A)

(C)

Migrating

GABAere

1. Glutamatergic Neurotransmission is **Required for Cortical Migration**

2. Glutamatergic Neurotransmission is **Required for Neuron Survival**

Phelan-McDermid syndrome (PMS)

- Part of the autism spectrum disorders
- PMS is caused by deletions/alterations on chromosome 22
- SHANK3 always impacted

SHANK3^{+/-} hiPSC neurons can model Phelan–McDermid syndrome (PMDS)

Strategy 1: Elevate SHANK3 expression

 Reduced SHANK3 expression contributes to synaptic defects in PMDS neurons

Research Paper

Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome

Hélène Darville ^a, Aurélie Poulet ^a, Frédérique Rodet-Amsellem ^b, Laure Chatrousse ^a, Julie Pernelle ^{c,d}, Claire Boissart ^a, Delphine Héron ^{e,f}, Caroline Nava ^{e,f}, Anselme Perrier ^{c,d}, Margot Jarrige ^{c,d}, Francis Cogé ^g, Mark J. Millan ^g, Thomas Bourgeron ^{h,ij}, Marc Peschanski ^{c,d}, Richard Delorme ^{b,h}, Alexandra Benchoua ^{a,*}

• Rescue is possible by LiCl and has positive clinical outcome; study ongoing

NIH U.S. National Library of Medicine

ClinicalTrials.gov

Effect of Lithium in Patients With Autism Spectrum Disorder and Phelan-McDermid Syndrome (SHANK3 Haploinsufficiency) (Lisphem)

ClinicalTrials.gov Identifier: NCT04623398

Ctrl + IGF1 PMDS + IGF1

Cross

Strategy 2: SHANK3-independent approach

 PMDS: reduced expression of glutamate receptors and decreased number of synapses (excitatory/inhibitory balance)

LETTER

SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients

Aleksandr Shcheglovitov¹, Olesya Shcheglovitova¹, Masayuki Yazawa¹, Thomas Portmann¹, Rui Shu¹, Vittorio Sebastiano^{2,3}, Anna Krawisz¹, Wendy Froehlich^{4,5}, Jonathan A. Bernstein⁴, Joachim F. Hallmayer⁵ & Ricardo E. Dolmetsch⁶

- IGF1: SHANK3independent rescue possible
- Alternative drugable pathways?

Darville et al., EBioMedicine, 2016 Shcheglovitov et al., Nature, 2013

SHANK3+/- haploinsufficient NPCs differentiate faster and proliferate slower

SHANK3+/- haploinsufficient NPCs differentiate faster

ksilink

Step 1: Overall screening strategy design

Step 2: Cell handling & protocol automation

1* ThermoFisher Multidrop Combi; 2* Agilent Bravo; 3* Labcyte Echo555, 4* Agilent Vprep; 5* Biotek EL406; 6* Yokogawa CV7000

Overview: Screening of 7,560-compound MoA library

Step 3: Primary screening *The screening protocol is technically robust between replicates*

HT (SHANK3+/-) data shown only.

Step 3: Primary screening

22 molecules decrease differentiation specifically in SHANK3+/- NPCs

- HT (SHANK3+/-) specific increase in Ki67 proliferation and decrease in HuC/D differentiation
- Desired hit profile: Outside of HT 3σ window, but inside of WT 4σ window = <u>22 compounds</u>

Known compound MoAs allow functional clustering

22 hits: Multiple targets related to β-catenin & AKT/MAPK pathways

Physical association (thickness = confidence) Functional and physical association (thickness = confidence)

ksilink

Step 4: Chemical and biological hit validation

- Hit list expansion (i.e. addition of "toxic" molecules with similar target)
- Testing of independent compound batches
- Compound evaluation on different genetic background (patient-derived cells)

Step 4: Compound #11 – Validation in original patient derived NPCs

Hoechst HuC/D Ki67

10 μM image not shown.

Step 4: Compound #11 – Validation in original patient derived NPCs

Step 5: Secondary screening Reversal of hyperdifferentiation-linked increase in synapses

- Focus on D28 synaptic phenotype (compound treatment D21-D28)
- Previously identified phenotype: SHANK3+/- dependent hyperdifferentiation leading to increased numbers of synapses.

• Analysis endpoints:

- 1. Dose dependent decrease of MAP2/SHANK3/Synapsin triple positive punctae ("synapses").
- 2. No dose dependent impact on dendtritic MAP2 network.
- 3. No strong signs of toxicity (nuclear count).
- 4. SHANK3+/- specificity in ESC- and iPSC-derived neurons.

Step 5: Secondary screening Compound #11 – Reduction of synaptic punctae in CRISPR NPCs

DMSO

1 μΜ

- Similar neuronal network length
- Similar expression level of SHANK3

Step 5: Secondary screening Compound #11 – Reduction of synaptic punctae in CRISPR NPCs

Take home messages

- Mutations in SHANK3 cause Phelan-McDermid Syndrome (PMDS)
- PMDS falls into the autism spectrum and is linked with macroencephaly, a form of neuronal hyperdifferentiation
- Neuro(developmental) disease models are amendable to chemical genomics
- Multiple SHANK3+/- specific compounds slow neuronal differentiation observed at two different timepoints using two different experimental assays
- When added later during the differentiation, two compounds also reduce the number of synapses without impacting the neurite network

Environment, genes and neurological disease

- We won't be able to study climate change-effects in stem cell derived neurons
- But: We might be able to identify chemical modifiers of targets or pathways related to stressors or external effects identified by other experimental/data mining approaches.

ksilink

• Keep in mind: Chemical genetics approach presented here today can be applied to key pathways of interest.

Thank you for your attention!

Ksilink

THANK YOU!

16 rue d'Ankara 67000 Strasbourg – France T +33 (0)3 68 93 01 75 contact@ksilink.com

www.ksilink.com

Members of the Ksilink association are:

AFM-Téléthon BioPro Baden-Württemberg BioValley France DFKZ German Cancer Research Center Inserm Lead Discovery Center GmbH Life & Brain GmbH Myriamed GmbH Sanofi-Aventis R&D Universität Heidelberg Université de Strasbourg Zentral Institut Mannheim

Step 4: Compound #11 – Validation in original CRISPR NPCs

Hoechst HuC/D Ki67

10 μM image not shown.

Step 4: Compound #11 – Validation in original CRISPR NPCs

